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Abstract

I present an extremely simple derivation of the underlying physics and basic
equations of the five most important properties of synchrotron light sources.

The use of synchrotron sources is widespread in different disciplines, and in a state of
explosive growth. Paradoxically, many users do not understand the simple physical cau-
ses of their amazing properties. In a recent article, I demonstrated1 that such properties
can be derived with a very simple approach — and no integrals at all..

I now present an even simpler derivation for a subset of the synchrotron light properties.
This allows the underlying physics to stand up clearly, not cluttered by mathematical
formalism.

The treated propertied are (1) the spectrum (peak and bandwidth) and the angular spread
of an undulator; (2) the spectrum (peak and bandwidth) and the angular spread  of a
bending magnet and of a wiggler; (3) flux and brightness; (4) polarization (5) coherence. I
will assume that the reader is already qualitatively and generally familiar with the
components of a synchrotron source, i.e., the storage ring with its bending magnets and
insertion devices (wigglers and undulators).

Before going into the detailed discussion, we need a minimum of background. The most
important physical point underlying the discussion is that synchrotron light production is

always achieved by exploiting the combination of two relativistic effects, for example Lorentz con-

traction and the Doppler shift. Thus, we must recall the simple relativistic rules for changing
the reference frame.

As shown in Fig. 1, in the laboratory frame we call x’ the coordinate along the electron
beam motion, y’ the perpendicular coordinate in the plane of the storage ring and θ’ the
light emission angle with respect to the x-axis. The corresponding coordinates in the source
frame (electron frame) are: x, y and θ.

1. G. Margaritondo, J. Synchrotron Radiation 2, 148 (1995).



Note that the “electron frame” is not the frame moving with the electron (where the electron
would have no acceleration and  therefore would emit no light). It is instead the inertial
frame moving along the x-axis with the same instantaneous speed u as the light-emitting
electron.

In our discussion we will use the standard relativistic factors β = u/c and γ = 1/
  1 2− β .

One should keep in mind that γ = mc2/moc2, and therefore is the energy of the light-
emitting electron (the accelerator energy) expressed in units of moc2, the electron rest energy.
In the appendix, we report a few simple mathematical tricks that are used in the following
discussion.

Undulators

Underlying physics

• The peak emission wavelength of an undulator is given by the undulator period,
shortened first by the Lorentz contraction and then by the Doppler shift.

• The corresponding shortening factors must take into account the angular dependence
of the Doppler effect and the effect of the magnetic-field-induced electron undulations.

• The “natural” bandwidth is the given by the “diffraction grating” effect of the series of
magnets in the undulator.

• The angular spread is determined by the fact that the corresponding energy spread
cannot exceed the “natural” bandwidth.
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Fig. 1 - Coordinate systems: x and
y in the source reference frame,
and x’ and y’ in the laboratory
frame. The source (electron) is
moving along the x-axis, at the
speed u in the laboratory frame.



Undulator Emission Peak

Consider the undulator magnet array as “seen” by the moving electron in the electron
frame (Fig. 2a). The relativistic (Lorentz) frame change rules show one important point:
the electron “sees” (Fig. 2b) not only an oscillating magnetic field but also an oscillating
electric field in the perpendicular direction — in short, it sees an “electromagnetic wave”.
Its wavelength in the electron frame, L/γ, equals the undulator period L after Lorentz
contraction by the γ-factor.

Upon interaction with the
“electromagnetic wave”, the electron
emits (first-harmonic) light of the same
wavelength L/γ. Specifically, this is the
electron-frame wavelength.

The corresponding wavelength in the
laboratory frame is subject to the Dop-
pler effect (Fig. 2c). Along the x-axis (θ‘ =
0), the multiplying Doppler factor is

  1 1− +β β/   ≈ ... [see Eq. A1] ... ≈

1/2γ. Thus, the emitted first-harmonic
wavelength along the x-axis in the
laboratory frame is:

λ’  ≈ 
  

L

2 2γ  . (1)

Thus, the macroscopic undulator period can be transformed into the angstrom-size
wavelength of x-rays by a clever use of the two combined relativistic effects; contraction
and Doppler shift.

Equations 1 is only a first approximation. With little effort, it can be refined to take into
account two important corrections:

• The Doppler effect changes with the emission angle θ’. The correct Doppler multiplica-
tion factor is γ(1 - βcosθ’). Assuming small angles and β ≈ 1, (see appendix,  Eq. A2):
γ(1 - βcosθ’) ≈ (1/2γ)(1 + γ2θ’2), so that:

λ’  ≈   
  

L

2 2γ  (1 + γ2θ’2)   . (2).
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Fig. 2 - Schematic explanation of the on-axis
undulator (first harmonic) peak wavelength.



• The “undulations” of the electron with respect to the undulator x-axis decrease its ave-
rage velocity x-component and therefore the effective β-value and γ-value in the x-
direction. The average magnitude of the y-axis component of the velocity is proportional
to the acceleration and therefore to the undulator magnetic field magnitude, B. This
implies that β2 effectively decreases becoming β2(1 - aB2), with a = constant. Likewise,
γ2 = 1/(1 - β2) must be replaced by γ2/(1 + bB2), where b is also a constant.

Equation 1 becomes then:

λ’  =   
  

L

2 2γ (1 + bB2)   , (3)

revealing the important property that the emission peak can be changed by changing
B.

The two corrections (Eqs. 2 and 3) can be combined in the first order, obtaining for the
undulator peak:

λ’  ≈   
  

L

2 2γ (1 + γ2θ’2 + bB2)   . (4)

Undulator Bandwidth

The periodic array of magnets including N. periods acts as a diffraction grating. The rela-
tive bandwidth is then given by the well-known diffraction-grating equation. For the first
harmonic:

∆ ′
′

λ
λ   =  

  

1
N

(5)

Undulator Angular Spread

Consider, for simplicity, the limit B ≈ 0. The peak λ’ along the x-axis is given by Eq. 1.
According to Eq. 2, at an angle δθ’ with respect to the x-axis there is a relative shift:

∆ ′
′

λ
λ   =  

  

′ ′ ′
′

λ γ δθ λ
λ

[1 + ( ) ] -2 2
 =   γ2(δθ’)2  ; (6).

on the other hand, ∆λ’/λ’ cannot exceed the natural limit of Eq. 5, 1/N; thus, the maxi-
mum deviation (angular spread) is given by:



δθ’  ≈  
  

1
Nγ   . (7)

We will see later that (1/γ) is the “natural” angular spread of all types of synchrotron light
emission. In the case of undulators, the actual angular spread is substantially reduced by

the factor   N .

Bending Magnets and Wigglers

Underlying physics

• The narrow  angular spread is the effect of the (relativistic) Doppler modification of
the direction of the emitted light.

• The peak emission wavelength is the wavelength corresponding to the cyclotron
resonance frequency.

• While estimating the peak wavelength, one must take the relativistic expression for
the cyclotron frequency, and the Doppler shift.

• The bandwidth is the given by the “searchlight effect”: the narrow angular spread of
the emitted light produces short light pulses along the beamline, and therefore broad
frequency and wavelength bandwidths.

Natural Angular Spread

The extreme collimation (narrow angular spread) of synchrotron light is another aspect of
the Doppler effect (Fig. 3). Consider a light beam emitted at the θ-angle in the electron
frame. Even for classical waves, e.g., acoustic waves, the change to the laboratory frame
would cause a decrease of the angle: θ’  <  θ — and therefore collimation.  The reason, for
acoustic waves, is trivial: the source speed u is added to the wave speed, “projecting” the
wave in the forward direction.

The (relativistic) case of light is slightly more complicated. The light velocity components
are dx/dt and dy/dt in the electron frame. The Lorentz frame transformation rules predict
a γ-factor for dx’ and dt’, but not for dy’. Thus, θ’ ≈  (dy’/dt’)/(dx’/dt’) = dy’/dx’ is
proportional to 1/γ.

This is why the natural angular spread of synchrotron light is related to 1/γ — and
exceedingly small. A little more precisely:    tnθ = (dy/dt)/(dx/dt)  =  dy/dx ;    tnθ’ =
(dy’/dt’)/(dx’/dt’) =  dy’/dx’  =  dy/[γ (dx  -  cβdt)]  =  tnθ /[γ (1  -  cβdt/dx)].
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Fig. 3 - For acoustic
waves, the source motion
causes some collimation
by “projecting forward”
the emission (top). In the
case of light and fast-
moving electrons, the
collimation is much more
pronounced and the
angular spread ≈ 1/γ
(bottom).

Since cdt/dx  =  c/(dx/dt)  =  cosθ , we have:

tnθ’  ≈  
  

tnθ
γ β θ( cos )1 −   , (8)

so that, for example, an “average” electron-frame emission angle θ ≈ π/4  becomes an
exceedingly narrow θ’  ≈  0.4/γ .

Bending Magnet Emission Peak

The peak wavelength in the electron frame is related (Fig. 4) to the cyclotron frequency ν:
λ = c/ν. In turn, the “cyclotron frequency” is the rotation  frequency of the magnetic-field-
induced motion.

Subject to the Lorentz force caused by
a magnetic field, an electron circulates
in a circular orbit with a frequency ν,
called “cyclotron frequency” and
angular velocity ω = 2πν. Because of
the centripetal acceleration, the
charged electron emits electromagnetic
waves, whose peak frequency is ν,
corresponding to a peak wavelength λ
= c/ν.
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In the laboratory frame, the magnetic-field force magnitude is euB, and the cyclotron
frequency is:

 ν’   =   
  

eB
2 mπ

   =    
  

eB
2 moπγ  , (9)

 where m = γmo is the relativistic mass.

In the electron frame, the magnetic-field force becomes an electrostatic force of magnitude
γeuB. The cyclotron frequency ν must be calculated using this force and the electron rest
mass:

ν  =   
  

γeB
2 moπ   , (10)

thus:   λ  =  
  

2 cm
eB

oπ
γ   .

After Doppler-shifting by the (approximate) factor 2γ, the peak emission in the laboratory
frame is:

λ’  ≈   
  

2 cm

2 eB
o

2
π
γ  . (11)

Note, once again, the characteristic factor 2γ2.

Bending Magnet Bandwidth

The bending-magnet bandwidth is dominated by the “searchlight” phenomenon. Because
of the extreme (θ’  ≈  1/γ) collimation, each emitting electron behaves like a searchlight.
When it passes in front of a beamline connected to a bending magnet source, it illuminates
the beamline and the detector only for a very short time. This narrow time pulse corres-
ponds to a broad frequency spectrum, i.e., to a wide wavelength bandwidth.

The wavelength bandwidth ∆λ’ corresponding to a pulse duration ∆t’ is given by the
Fourier-theorem equation:

∆t’∆λ’ ≈  λ’2/2πc (12)



We must then calculate ∆t’: this is a bit complicated because (Fig. 5) the electron circular
motion is combined with the motion of the emitted light. Suppose that at t’ = 0 the electron
position is such that its geometric emission cone 1/γ  begins to touch the detector. If the
electron-detector distance is A, the light pulse at the detector begins after the time delay
t1’ = A/c required for the light to travel along A.

The electron and its geometric
emission cone rotate with an
angular speed  ω’  =   2πν’, where ν’
is the cyclotron frequency of Eq. 9.
Thus, ω’  = eB/γmo, and the
geometric emission cone leaves the
detector after a time τ’ = (1/γ)/ω’  =
(1/γ)/(eB/γmo) = mo/eB.

During the same time, the electron
travels reducing its distance from
the detector to  ≈A - uτ’ . Thus, the
light pulse at the detector ends at
t2’ = τ’  +  (A - uτ’)/c. And the pulse
duration is:

∆t’ =  t2’ - t1’ =  τ’ (1 - u/c) =  τ’ (1 - β)
≈   [see Appendix, Eq. A3]  ≈  τ’/2γ2

=  mo/2γ2eB.  Using Eq. 12:

∆λ’  ≈  
  

2 cm

2 eB
o

2
π
γ    . (13)

Quite interestingly, by comparing Eqs. 11 and 13 we realize that for bending magnets ∆λ’
≈ λ’, and therefore:

∆ ′
′

λ
λ

   ≈   1  . (14)

Critical wavelength

The results of Eqs. 11 and 13 qualitatively correspond to the well-known bending magnet
spectra. To recognize this fact, we must remember that the “standard” plot of the bending
magnet emission is on a log-log scale.

A
detector

≈uτ’

≈A-uτ’

Pulse starts:
• emission starts at time zero
• detection starts at t

1
’ = A/c

Pulse ends:
• emission ends at τ’ = mo/eB
• detection ends at t

2
’ = τ’ + (A - uτ’)/c

Fig. 5 - Calculation of
the pulse duration for
b e n d i n g - m a g n e t
emission.

electron



A broadened peak centered at λ’ and with bandwidth ∆λ’ ≈ λ’ does indeed closely resemble
the “standard” lineshape of a bending-magnet emission spectrum — see Fig. 6.

Because of Eq. 14, the emission spectrum is characterized by only one parameter, the peak.
Quite often, however, a different parameter is used, the “critical wavelength”. This is
defined as the equipartition wavelength for the emitted energy: equal amounts of emitted
energy are located at lower and higher wavelengths.
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Fig. 6 - Left: plot of the broadened-peak emission of a bending magnet (the
horizontal scale is normalized to the peak position). Right: the same plot in
a log-log scale, revealing the well-known synchrotron emission spectral
lineshape. In the left part, the shaded area emphasizes the fact that the
“equipartition wavelength” or critical wavelength is shifted with respect to
the peak, because of the limits to calculate the intensity integrals on the left-
hand side and on the right-hand side. The same point is emphasized by the
vertical line in the left plot, showing the critical wavelength.

When integrating the emitted spectrum to derive the critical wavelength, one should keep
in mind (see again Fig. 6) that the integration is, on the left-hand side, from zero wavelength
to the peak — whereas on the right-hand side is from the peak to infinite wavelength. This
explains why the critical wavelength is shifted to the right-hand side with respect to the
peak.

Bending Magnets, Wigglers and Undulators

A comparison of Eqs. 5 and 13 (see Fig. 7) reveals the dramatic difference between
undulators and bending magnets: a very narrow bandwidth vs. a very broad bandwidth.
What is the cause of this difference?



Simple: we have seen that the broad bending magnet bandwidth is due to the short pulse
duration — the beam illuminates the detector only for a short time. Such is not the case of
an undulator: the B-field is quite weak, the electron undulations are gentle, and the emission
cone illuminates the detector during the entire transit of the electron through the periodic
array of magnets.

There exist a third case:  if the periodic B-field is strong, the undulations are large and the
detector illumination is not a long pulse but a series of short pulses. One finds again the
broad bandwidth as for bending magnets. The corresponding emitting device - called
“wiggler” - is equivalent to a series of bending magnets.

Flux and Brightness

How can the quality of a light source be assessed? There exist several possible parameters,
and this generates some confusion. In order to keep the analysis simple, one must think in
terms of the desired final result: roughly speaking, to bring as much light per unit time as
possible into the illuminated sample area.

As far as the source is concerned,
this corresponds to one or both of
two requirements: (1) the total flux
of light F emitted by the source must
be high; (2) the source must be very
“bright”. The first requirement is
obvious: if more light is emitted,
more arrives to the sample. The se-
cond requirement is a bit more
subtle.

In most cases, the light is brought
to the sample by using a series of
optical devices along the beamline,
such as curved mirrors. Each device
can change the beam angular diver-
gence ∆θ’ and/or the beam size ∆y’.
However, optics shows that it
cannot change the product ∆θ’∆y’.

(a) Undulator: one long pulse
(narrow bandwidth)

(b) Bending magnet: one short
pulse (broad bandwidth)

(c) Wiggler: a series of short pul-
ses (broad bandwidth)

detector

Fig. 7 - Comparison between undulators,
bending magnets and wigglers as far as
the pulse duration and the corresponding
bandwidth are concerned.



The consequences are extremely important: to “focus”, i.e., to decrease the beam size on
the sample thus increasing the amount of light, one must accept an increase in beam di-
vergence. If the initial (source) value of the ∆θ’∆y’ product is too high, the beam diver-
gence may become so large that, to avoid losing part of the beam, one must increase the
size of the optical devices.

However, for x-ray optics large-size devices such as curved  mirrors are exceedingly
expensive and often unfeasible. It is thus very desirable to use a source with a small value
of the ∆θ’∆y’ product.

Note that this conclusion is valid not only for the y-axis, but also for the other direction
perpendicular to the x-axis, the z-direction. Calling ∆θ’y = ∆θ’ and ∆θ’z the angular spreads
in the y and z directions, the overall geometric requirement is to have a small value of
(∆θ’y∆y’)(∆θ’z∆z’).

One usually summarizes the requirements of high flux, small size and small angular di-
vergence by saying that one should minimize the value of the parameter:

constant ×  
  

F
( y )( z )y z∆ ∆ ∆ ∆′ ′ ′ ′θ θ   , (15)

which roughly corresponds to the source “brightness”.

Thus, a source is “bright” if it has high emitted flux and good geometric characteristics —
see Fig. 8.. High brightness is the key parameter defining the astonishing recent progress
of synchrotron sources and of their applications.

What causes the high brightness?

The answer is twofold. First, the most recent synchrotron sources have excellent geometric
characteristics, The source size (∆y’ and ∆z’) is primarily determined by the transverse
size of the electron beam, which in modern “synchrotrons” (storage rings) is amazingly
small. And we have illustrated the effects that make the angular divergence very small for
bending magnets (in the horizontal y-direction) and even smaller for undulators.

As to the flux, synchrotrons emits an almost incredible amount of light. Physics teaches
that an electron, i.e., an electric charge, which travels along a circular path emits light with
a total power proportional to the square of the acceleration. In turn, the total power
determines the total flux, so that F  ∝   a2.



On the other hand, the centripetal acceleration in the electron frame is related to the angular
velocity, which in turn is related to the cyclotron frequency: a = (2πν)u ≈ (2πν)c, therefore
a2 is approximately proportional to ν2. Considering Eq. 10, this means that:

F  ∝  γ 2B2.

This result is normally expressed using the
radius of curvature R of the electron
trajectory rather than B. In the laboratory
frame, (2πν’)R = u ≈ c, thus R is proportional
to 1/ν’ and therefore, according to Eq. 9, to
γ/B, so that B2 ∝ γ 2/R2, and:

F  ∝  γ 4/R2  .

Considering the large magnitude of γ, one
can understand the amazing amount of
emitted light by a synchrotron — and its
rapid increase with the synchrotron
(electron) energy, which corresponds to γ.

Polarization

Understanding the polarization of synchrotron light is almost trivial. One should simply
imagine the motion of the electrons as seen from the point of view of the detector.

The circular motion along the electron trajectory becomes an oscillatory linear motion
when seen from a point of view in the plane of the electron orbit. The electrons “look like”
a charge oscillating along an antenna. Thus, in the plane of the ring the emitted light has
linear polarization.

If we change slightly this point of view by moving slightly out of the plane of the ring, the
electrons appear to move along an elliptical trajectory. The polarization becomes thus
elliptical, with different orientation above and below the plane of the ring.

The lateral undulations along a standard undulator will of course produce linear
polarization. But undulators can be designed to produce more complicated types of electron
motion; for example, “elliptical” undulators give elliptical polarized light.

LIGHT
SOURCE

Source size,
∆y’∆z’

Angular spread,
∆θy’∆θz’

Total flux, F

Fig. 8 - The source parameters which
determine the brightness or brilliance.



Coherence

This fundamentally important property of synchrotron light was largely neglected in the
past. However, the most recent synchrotron sources possess high coherence, which because
of its many applications is extremely important and can no longer be ignored.

Roughly speaking a wave is “coherent” if it can produce detectable effects typical of waves
— such as diffraction and interference. We can thus analyze coherence by using a specific
phenomenon such as diffraction by a pinhole of diameter d (Fig. 9a).

An infinitely small (point) source emitting only one wavelength λ’ will of course produce
a detectable diffraction pattern. But what happen if the source size is finite, and/or its
wavelength bandwidth ∆λ’ is finite? The pattern is blurred, and it may or may not still be
detectable. The conditions for a detectable pattern define the degree of coherence of the
source.

Time (Longitudinal) Coherence

Consider first the effects of a finite wavelength bandwidth — Fig. 9b. For simplicity, we
consider a source emitting only two wavelengths, λ’ and λ’ + ∆λ’. The angular positions of
the first-order diffraction maxima are  α1(λ’)  ≈   2λ’/d  and  α1(λ’ + ∆λ’)  ≈   2(λ’ + ∆λ’)/d.

Roughly speaking, the pattern will be still visible, although somewhat blurred, if the shift
α1(λ’ + ∆λ’) - α1(λ’)  is small with respect to α1(λ’), thus:

 
  

α λ λ α λ
α λ

1 1

1

( + ) -  ( )
( )

′ ′ ′
′

∆
 <  1 ,

which simply gives:

∆ ′
′

λ
λ   <  1 . (16)

The value of the relative bandwidth, therefore, determines the degree of time coherence.
For bending magnet sources (Eq. 14),  ∆λ ’/λ ’ ≈ 1, so some kind of additional
monochromatization is normally required. On the other hand, even the bandpass action
of detectors and/or mirrors may be sufficient to observe the simplest coherence-related
effects. For undulators, Eq.  5 reveals an intrinsically high degree of time coherence.
However, further monochromatization may be required for the most sophisticated
coherence-based techniques.
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Fig. 9 - Simplified discussion
of time and spatial coherence.



Spatial (Lateral) Coherence

We now analyze the effects of the finite size ∆y’ of the source along the y-axis. For simplicity,
we consider a source formed by two emitting points P1 and P2 (Fig. 9c), at a distance ∆y’
from each other.

The two patterns for P1 and P2 are centered at the angles α0(P1) = 0, and α0(P2) = ∆y’/D,
where D is the source-pinhole distance. The first-order pattern for P1 is at α0(P1) = 2λ’/d.
Roughly speaking, an overall pattern can still be detected if:

 α0(P2) <  α1(P1)  ,

which gives:

 ∆y’ (d/D)  <  2λ’  .

On the other hand, (d/D) ≈  Ωy,  the “illumination angle” of the pinhole in the y-direction.
Thus, the condition for spatial coherence is:

∆y’ Ωy  <  2λ’  . (17)

Therefore, the efforts to improve the brightness by decreasing the source size produce a
second, important result: higher spatial coherence.

The decrease in the source angular spread is also a positive factor. Consider again Fig. 9c:
each source has angular divergence ∆θ’y. Only a fraction of this angle can be used to produce
a detectable diffraction pattern. According to Eq. 17, this fraction is   (2λ’/∆y’)/∆θ’y =
2λ’/(∆y’∆θ’y). Thus, by decreasing the angular spread one can use more of the source
emission to produce coherence-requiring phenomena.

The same analysis is valid for the z-direction. This leads to the definition of the “coherent
power” of the source, corresponding to the fraction of the emitted light which can be
exploited for coherence-requiring phenomena:

Coherent Power  ≈   
  

2
y

2
zy z

′
′ ′

′
′ ′

λ
θ

λ
θ∆ ∆ ∆ ∆    =   

  

2
( y )( z )

2

y z

′
′ ′ ′ ′

λ
θ θ∆ ∆ ∆ ∆   . (18)

Note two important points: first, the coherent power decreases with the square of the
wavelength, therefore it is difficult to obtain spatially coherent x-rays. Second, Eqs. 15 and
19 show that an improvement of the source geometric factors - size and divergence -
increases both the brightness and the spatial coherence.



Diffraction Limit

The efforts to improve the geometric characteristics of a light source, ∆θ’y, ∆y’, ∆θ’z and
∆z’, are not open-ended. The ultimate result is the achievement of the so-called “diffrac-
tion limit”.

Suppose that one must transform a large source of spherical waves into a source with
small size and divergence. One simple solution is a screen with a pinhole of size d which
eliminates all emission except the light going through the pinhole, so that the beam size is
reduced to ∆y’ ≈ ∆z’ ≈ d.

One cannot, however, produce a beam with both infinitely small size and infinitely small
divergence. The diffraction by the pinhole spreads the light, giving  ∆θ’y ≈ ∆θ’z ≈ 2λ’/d.
Thus, the minimum possible value for ∆y’∆θ’y and ∆z’∆θ’z is ≈ 2λ’.

Eq. 18 shows that when ∆y’∆θ’y and for ∆z’∆θ’z reach this minimum value or “diffraction
limit” the coherent power is 100%, i.e., the source has full lateral coherence. The ∆y’∆θ’y
and ∆z’∆θ’z products which determine the brightness cannot be improved beyond the
diffraction limit. This is not a technical limitation, but a fundamental optical limit of all
light sources.

Where do the actual synchrotron sources stand with respect to this limit? The answer is
quite interesting: third-generation sources like Elettra reach the diffraction limit for
wavelengths down to ≈103 Å. More advanced future facilities like the Swiss Light Source
will reach the diffraction down up to λ’ ≈ 100 Å, and therefore will constitute up to those
wavelengths the ultimate sources as far as geometry is concerned.

Conclusions

All properties of synchrotron sources are the result of relativistic phenomena and classical
effects of light emission. Their basic understanding does not require a complicated
theoretical treatment, but only the simple use of basic relativistic and optics notions.
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Appendix: Useful Mathematical Tricks in Relativity

(1) On-axis Doppler factor:

  

1
1

1
1

1
1

1
1

1
1

2−
+

=
−
+

+
+

=
−
+

=
+

β
β

β
β

β
β

β
β γ β( )

 ≈

≈.. [for β ≈ 1].. ≈  
  

1
2γ  . (A1)

(2) Off-axis Doppler factor:

For small angles:

γ(1 - βcosθ’) ≈  γ[1 - β(1 - (θ’2/2))] = γ(1 - β + βθ’2/2) = γ(1 - β) + βγθ’2/2  =

=  
  

1

1

−

−

β

β2   + βγθ’2/2  =  
  

1
1 1

−
− +

β
β β( )( )   + βγθ’2/2   =  

  

1
1

−
+

β
β  + βγθ’2/2   =

=  
  

1 1
1 1

− +
+ +

β β
β β   + βγθ’2/2   =  

  

1
1

−
+

β
β

2
  + βγθ’2/2   =  

  

1
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;

For  β ≈ 1:

  

1
1γ β( )+   + βγθ’2/2   ≈   (1/2γ)  +  γθ’2/2  =  (1/2γ)(1 + γ2θ’2), thus:

γ(1 - βcosθ’)  ≈  (1/2γ)(1 + γ2θ’2) . (A2)

(3) Another useful trick:

(1 - β)  = 
  

( )( )

( )

2

2
1 1

1
1
1

1
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− +
+

= −
+

=
+

β β
β

β
β γ β

  ≈ ...[for β ≈ 1]... ≈  
  

1

2γ2  . (A3)








